Wellcome

Laser Additive Manufacturing : Materials, Design, Technologies, and Applications.

By: Brandt, MilanMaterial type: TextTextSeries: Woodhead Publishing series in electronic and optical materialsPublication details: Kent : Elsevier Science, 2016Description: 1 online resource (500 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9780081004340; 0081004346Subject(s): Lasers -- Industrial applications | Manufacturing processes | Lasers -- Industrial applications | Manufacturing processesGenre/Form: Electronic books.Additional physical formats: Print version:: Laser Additive Manufacturing : Materials, Design, Technologies, and Applications.DDC classification: 621.36/6 LOC classification: TA1677Online resources: ScienceDirect
Contents:
Front Cover; Laser Additive Manufacturing; Related titles; Laser Additive Manufacturing: Materials, Design, Technologies, and Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; The role of lasers in additive manufacturing; Introduction; Laser as tool in AM; Laser-matter interaction in AM; Trends in powder- or wire-fed technology; Trends in powder bed technology; Summary; References; One -- Processes, technology and materials; 1 -- Laser-aided direct metal deposition of metals and alloys; 1.1 Introduction.
1.1.1 What is direct metal deposition?1.2 Review of the laser-cladding process; 1.2.1 What is laser-cladding technology?; 1.2.2 Novel materials and applications enabled by laser cladding; 1.2.3 Modeling of laser cladding; 1.2.3.1 Laser-powder interaction; 1.2.3.2 Heat transfer and fluid flow models; 1.2.3.3 Mass transfer models; 1.2.3.4 Self-consistent 3D transient model; 1.2.4 What is solid free-form fabrication?; 1.3 Material microstructure design and realization; 1.3.1 Homogenization design method; 1.4 Experimental procedure; 1.4.1 Negative coefficient of thermal expansion experiments.
1.4.2 Material selection1.5 Results and discussion; 1.5.1 Integrated design and manufacturing; 1.5.2 Remote manufacturing; 1.5.3 Process control and quality-assured manufacturing system (QAMS); 1.5.3.1 Geometry control; 1.5.3.2 Temperature and cooling rate control; 1.5.3.3 Composition sensor; 1.5.3.4 Microstructure sensor; 1.6 Summary and conclusion; Acknowledgments; References; 2 -- Powder bed fusion processes: an overview; 2.1 Process characteristics; 2.2 Processing parameters; 2.2.1 Definition of the combined processing parameters; 2.2.2 Morphology and size of particles.
2.3 Characteristics of the melt pool2.4 Microstructural features; 2.4.1 Texture; 2.4.2 Non-equilibrium microstructure; 2.4.3 Residual stresses, cracking and distortion of SLM-processed parts; 2.4.4 Defects and density of SLM-/SLS-processed parts; 2.5 Mechanical properties of SLM-processed metallic parts; 2.6 Concluding remarks; References; 3 -- Hybrid laser manufacturing; 3.1 Introduction; 3.2 Overview of possible hybrid laser manufacturing procedures; 3.3 Improving process performance by adding thermal heat sources; 3.3.1 Reducing stress by adding beam sources.
3.3.2 Preheating of the whole part in a furnace or by induction3.3.3 Hybrid laser manufacturing using local pre- and postheating by induction; 3.3.4 Effect of substrate preheating and comparison of different thermal effects; 3.3.5 Crack formation and delamination in LMD processes; 3.3.6 Influence of pre- and postheating on residual stresses at single and overlapping beads; 3.3.7 Geometry and position of the integrated inductor; 3.4 Hybrid approaches using mechanical impacts; 3.4.1 Reduction of distortion and stress by mechanical forces; 3.4.2 Combined finishing and laser-based AM.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
Ebooks Ebooks Mysore University Main Library
Not for loan EBKELV434

Print version record.

Front Cover; Laser Additive Manufacturing; Related titles; Laser Additive Manufacturing: Materials, Design, Technologies, and Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; The role of lasers in additive manufacturing; Introduction; Laser as tool in AM; Laser-matter interaction in AM; Trends in powder- or wire-fed technology; Trends in powder bed technology; Summary; References; One -- Processes, technology and materials; 1 -- Laser-aided direct metal deposition of metals and alloys; 1.1 Introduction.

1.1.1 What is direct metal deposition?1.2 Review of the laser-cladding process; 1.2.1 What is laser-cladding technology?; 1.2.2 Novel materials and applications enabled by laser cladding; 1.2.3 Modeling of laser cladding; 1.2.3.1 Laser-powder interaction; 1.2.3.2 Heat transfer and fluid flow models; 1.2.3.3 Mass transfer models; 1.2.3.4 Self-consistent 3D transient model; 1.2.4 What is solid free-form fabrication?; 1.3 Material microstructure design and realization; 1.3.1 Homogenization design method; 1.4 Experimental procedure; 1.4.1 Negative coefficient of thermal expansion experiments.

1.4.2 Material selection1.5 Results and discussion; 1.5.1 Integrated design and manufacturing; 1.5.2 Remote manufacturing; 1.5.3 Process control and quality-assured manufacturing system (QAMS); 1.5.3.1 Geometry control; 1.5.3.2 Temperature and cooling rate control; 1.5.3.3 Composition sensor; 1.5.3.4 Microstructure sensor; 1.6 Summary and conclusion; Acknowledgments; References; 2 -- Powder bed fusion processes: an overview; 2.1 Process characteristics; 2.2 Processing parameters; 2.2.1 Definition of the combined processing parameters; 2.2.2 Morphology and size of particles.

2.3 Characteristics of the melt pool2.4 Microstructural features; 2.4.1 Texture; 2.4.2 Non-equilibrium microstructure; 2.4.3 Residual stresses, cracking and distortion of SLM-processed parts; 2.4.4 Defects and density of SLM-/SLS-processed parts; 2.5 Mechanical properties of SLM-processed metallic parts; 2.6 Concluding remarks; References; 3 -- Hybrid laser manufacturing; 3.1 Introduction; 3.2 Overview of possible hybrid laser manufacturing procedures; 3.3 Improving process performance by adding thermal heat sources; 3.3.1 Reducing stress by adding beam sources.

3.3.2 Preheating of the whole part in a furnace or by induction3.3.3 Hybrid laser manufacturing using local pre- and postheating by induction; 3.3.4 Effect of substrate preheating and comparison of different thermal effects; 3.3.5 Crack formation and delamination in LMD processes; 3.3.6 Influence of pre- and postheating on residual stresses at single and overlapping beads; 3.3.7 Geometry and position of the integrated inductor; 3.4 Hybrid approaches using mechanical impacts; 3.4.1 Reduction of distortion and stress by mechanical forces; 3.4.2 Combined finishing and laser-based AM.

3.5 Conclusions and outlook.

There are no comments on this title.

to post a comment.

No. of hits (from 9th Mar 12) :

Powered by Koha