Wellcome

Monitoring and evaluation of biomaterials and their performance in vivo / edited by Claude E. Dolman.

Contributor(s): Narayan, Roger [editor.]Material type: TextTextSeries: Woodhead Publishing series in biomaterialsPublisher: Amsterdam [Netherlands] : Elsevier, 2017Copyright date: �2017Description: 1 online resource (226 pages) : illustrations, tablesContent type: text Media type: computer Carrier type: online resourceISBN: 0081006047; 9780081006047Subject(s): Biomedical materials | Biomedical materials -- Biocompatibility -- Testing | TECHNOLOGY & ENGINEERING -- Biomedical | Biomedical materials | Biomedical materials -- Biocompatibility -- Testing | Biocompatible Materials | Materials TestingGenre/Form: Electronic books. | Electronic book.Additional physical formats: Print version:: Monitoring and evaluation of biomaterials and their performance in vivo.DDC classification: 610.28 LOC classification: R857.M3NLM classification: 2017 B-586 | QT 37Online resources: ScienceDirect
Contents:
Front Cover; Monitoring and Evaluation of Biomaterialsand their Performance In Vivo; Related titles; Monitoring and Evaluation of Biomaterials and their Performance In Vivo; Copyright; Contents; List of contributors; One -- Monitoring and evaluationof the mechanical performance of biomaterials in vivo; 1 -- Nanostructured ceramics; 1.1 Introduction; 1.2 Test methods for nanostructured ceramics; 1.2.1 Micro/nanostructural evaluation; 1.3 Nanostructured bioceramics; 1.3.1 Low-temperature chemical bonding; 1.3.2 Why nanostructures in chemically bonded ceramics?
1.3.3 Nanostructures in the Ca aluminate-Ca phosphate system1.4 Application field of nanostructured bioceramics; 1.4.1 Dental applications including coating products; 1.4.2 Orthopedic applications; 1.4.3 Drug delivery carrier applications; 1.5 Conclusion and summary; Acknowledgments; References; 2 -- Monitoring degradation products and metal ions in�vivo; 2.1 Introduction; 2.2 Biodegradable metals: state of the art; 2.2.1 The metals and their alloys; 2.2.2 The temporary functional implants; 2.2.3 The in�vivo degradation; 2.3 In�vivo implantation study of biodegradable metals.
2.4 Current in�vivo techniques for monitoring degradation2.4.1 Radiography; 2.4.2 Ultrasonography; 2.4.3 Microcomputed tomography; 2.4.4 Magnetic resonance imaging; 2.4.5 Blood evaluation; 2.4.6 Histological analysis; 2.5 Proposed new in�vivo monitoring techniques; 2.5.1 Monitoring local changes surrounding an implantation site; 2.5.2 Monitoring systemic changes in body fluid; 2.5.3 Off-clinic point-of-care implant monitoring; 2.6 Conclusion; Acknowledgments; References; two -- Monitoring and evaluationof the biological responseto biomaterials in vivo.
3 -- Imaging biomaterial-associated inflammation3.1 Introduction; 3.2 Near-infrared fluorescence imaging; 3.2.1 Inflammatory cell imaging; 3.2.2 Macromolecular protein imaging; 3.2.3 Small molecule imaging; 3.3 Chemiluminescence imaging; 3.4 Bioluminescence imaging; 3.5 Magnetic resonance imaging; 3.6 Conclusions and future perspectives; References; 4 -- Monitoring fibrous capsule formation; 4.1 Introduction; 4.2 Functions; 4.3 Structure; 4.4 Joint classification; 4.5 Fibrous capsule formation; 4.6 Diameters of single-polymer fibers and tissue response.
4.7 Monitor capsule formation around soft tissue4.7.1 Strain gauges; 4.8 Glucose monitoring in�vivo through fluorescent hydrogel fibers; 4.9 Cellular and molecular composition of fibrous capsules formed around silicone breast implants; 4.10 Capsular contracture after two-stage breast reconstruction; 4.11 Graphene-based biosensor for future perspectives; References; 5 -- Monitoring biomineralization of biomaterials in�vivo; 5.1 Introduction; 5.2 Biomineralization; 5.3 Disruption to the biomineralization process and tissue engineering; 5.4 Biomaterials for the repair of mineralized tissue.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
Ebooks Ebooks Mysore University Main Library
Not for loan EBKELV596

Front Cover; Monitoring and Evaluation of Biomaterialsand their Performance In Vivo; Related titles; Monitoring and Evaluation of Biomaterials and their Performance In Vivo; Copyright; Contents; List of contributors; One -- Monitoring and evaluationof the mechanical performance of biomaterials in vivo; 1 -- Nanostructured ceramics; 1.1 Introduction; 1.2 Test methods for nanostructured ceramics; 1.2.1 Micro/nanostructural evaluation; 1.3 Nanostructured bioceramics; 1.3.1 Low-temperature chemical bonding; 1.3.2 Why nanostructures in chemically bonded ceramics?

1.3.3 Nanostructures in the Ca aluminate-Ca phosphate system1.4 Application field of nanostructured bioceramics; 1.4.1 Dental applications including coating products; 1.4.2 Orthopedic applications; 1.4.3 Drug delivery carrier applications; 1.5 Conclusion and summary; Acknowledgments; References; 2 -- Monitoring degradation products and metal ions in�vivo; 2.1 Introduction; 2.2 Biodegradable metals: state of the art; 2.2.1 The metals and their alloys; 2.2.2 The temporary functional implants; 2.2.3 The in�vivo degradation; 2.3 In�vivo implantation study of biodegradable metals.

2.4 Current in�vivo techniques for monitoring degradation2.4.1 Radiography; 2.4.2 Ultrasonography; 2.4.3 Microcomputed tomography; 2.4.4 Magnetic resonance imaging; 2.4.5 Blood evaluation; 2.4.6 Histological analysis; 2.5 Proposed new in�vivo monitoring techniques; 2.5.1 Monitoring local changes surrounding an implantation site; 2.5.2 Monitoring systemic changes in body fluid; 2.5.3 Off-clinic point-of-care implant monitoring; 2.6 Conclusion; Acknowledgments; References; two -- Monitoring and evaluationof the biological responseto biomaterials in vivo.

3 -- Imaging biomaterial-associated inflammation3.1 Introduction; 3.2 Near-infrared fluorescence imaging; 3.2.1 Inflammatory cell imaging; 3.2.2 Macromolecular protein imaging; 3.2.3 Small molecule imaging; 3.3 Chemiluminescence imaging; 3.4 Bioluminescence imaging; 3.5 Magnetic resonance imaging; 3.6 Conclusions and future perspectives; References; 4 -- Monitoring fibrous capsule formation; 4.1 Introduction; 4.2 Functions; 4.3 Structure; 4.4 Joint classification; 4.5 Fibrous capsule formation; 4.6 Diameters of single-polymer fibers and tissue response.

4.7 Monitor capsule formation around soft tissue4.7.1 Strain gauges; 4.8 Glucose monitoring in�vivo through fluorescent hydrogel fibers; 4.9 Cellular and molecular composition of fibrous capsules formed around silicone breast implants; 4.10 Capsular contracture after two-stage breast reconstruction; 4.11 Graphene-based biosensor for future perspectives; References; 5 -- Monitoring biomineralization of biomaterials in�vivo; 5.1 Introduction; 5.2 Biomineralization; 5.3 Disruption to the biomineralization process and tissue engineering; 5.4 Biomaterials for the repair of mineralized tissue.

Includes bibliographical references and index.

There are no comments on this title.

to post a comment.

No. of hits (from 9th Mar 12) :

Powered by Koha