Wellcome

Orthodontic applications of biomaterials : a clinical guide.

Material type: TextTextSeries: Woodhead Publishing series in biomaterialsPublication details: [Place of publication not identified] : Woodhead, 2016Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceISBN: 9780081003992; 0081003994Subject(s): Dental materials | Orthodontics | MEDICAL -- Dentistry -- Orthodontics | Dental materials | Orthodontics | Dental Materials -- chemistryGenre/Form: Electronic books.Additional physical formats: Print version:: Orthodontic applications of biomaterials.DDC classification: 617.6/95 LOC classification: RK652.5NLM classification: WU 190Online resources: ScienceDirect
Contents:
Front Cover; Orthodontic Applications of Biomaterials; Related titles; Orthodontic Applicationsof Biomaterials: A Clinical Guide; Copyright; Dedication; Contents; List of contributors; Biography; Theodore Eliades; William Brantley; Foreword; Preface; One -- Structure and properties of orthodontic biomaterials; 1 -- Structure/property relationships in orthodontic alloys; 1.1 Introduction; 1.2 Metallic bonding and general properties of metals; 1.3 Alloy concepts and manufacturing processes-manipulation and properties; 1.4 Orthodontic alloys; 1.4.1 Stainless steel; 1.4.2 Cobalt-chromium.
1.4.3 Nickel-titanium1.4.4 Beta-titanium and other titanium-rich alloys; 1.5 Characterization of orthodontic alloys; 1.5.1 Tension test; 1.5.2 Bending tests-orthodontics terminology; 1.5.3 Torsion; 1.5.4 Indentation hardness tests; 1.5.5 Measurement of archwire-bracket friction; 1.5.6 Optical, scanning electron, and atomic force microscope examinations; 1.5.7 X-ray diffraction; 1.5.8 Transmission electron microscopy; 1.5.9 Thermal analysis; 1.5.10 Electrochemical corrosion testing; References; 2 -- Structure/property relationships in orthodontic polymers; 2.1 Introduction.
2.1.1 Interatomic bonding for polymers2.1.2 General concepts for mechanical behavior of polymers; 2.1.3 General classification of polymers; 2.2 Fracture and deformation processes for polymers; 2.2.1 Classification of processes; 2.2.2 Brittle fracture of polymers; 2.2.3 Crazing of polymers; 2.2.4 Shear zones; 2.2.5 Strength diagrams; 2.3 Rheology of polymeric materials; 2.3.1 Introduction to rheology; 2.3.2 General descriptions of elasticity and viscoelasticity; 2.3.3 Newtonian fluids; 2.3.4 Transverse variation of velocity (velocity gradient); 2.3.5 Viscosity; 2.3.6 The Maxwell body.
2.3.7 The Kelvin-Voigt body2.3.8 Burgers body or four-element model; 2.3.9 Creep compliance; 2.3.10 Complex materials; 2.3.11 Dynamic mechanical analysis; Further reading; 3 -- Structure/property relationships in orthodontic ceramics; 3.1 Introduction; 3.2 Raw materials and manufacturing processes for ceramic brackets; 3.3 Optical properties of ceramic brackets; 3.4 Mechanical properties of ceramic brackets and clinical implications; 3.4.1 Fracture strength; 3.4.2 Fracture toughness; 3.4.3 Hardness; 3.5 Base characteristics of ceramic brackets; 3.6 Concluding remarks; References.
Two -- Orthodontic alloys: properties and clinical effects4 -- Orthodontic brackets; 4.1 Introduction; 4.2 Evolution and traditional brackets; 4.2.1 Original edgewise bracket; 4.2.2 Subsequent designs and traditional stainless steel brackets; 4.2.3 Bracket slot size; 4.2.4 Straight-wire appliance; 4.3 Self-ligating bracket (SLB); 4.4 Metallic brackets; 4.4.1 Introduction; 4.4.2 Traditional stainless steel bracket alloys and manufacturing processes; 4.4.3 Manufacturing of brackets by metal injection molding (MIM); 4.4.4 Titanium brackets; 4.4.5 Metallic brackets and medical imaging.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode
Ebooks Ebooks Mysore University Main Library
Not for loan EBKELV622

Front Cover; Orthodontic Applications of Biomaterials; Related titles; Orthodontic Applicationsof Biomaterials: A Clinical Guide; Copyright; Dedication; Contents; List of contributors; Biography; Theodore Eliades; William Brantley; Foreword; Preface; One -- Structure and properties of orthodontic biomaterials; 1 -- Structure/property relationships in orthodontic alloys; 1.1 Introduction; 1.2 Metallic bonding and general properties of metals; 1.3 Alloy concepts and manufacturing processes-manipulation and properties; 1.4 Orthodontic alloys; 1.4.1 Stainless steel; 1.4.2 Cobalt-chromium.

1.4.3 Nickel-titanium1.4.4 Beta-titanium and other titanium-rich alloys; 1.5 Characterization of orthodontic alloys; 1.5.1 Tension test; 1.5.2 Bending tests-orthodontics terminology; 1.5.3 Torsion; 1.5.4 Indentation hardness tests; 1.5.5 Measurement of archwire-bracket friction; 1.5.6 Optical, scanning electron, and atomic force microscope examinations; 1.5.7 X-ray diffraction; 1.5.8 Transmission electron microscopy; 1.5.9 Thermal analysis; 1.5.10 Electrochemical corrosion testing; References; 2 -- Structure/property relationships in orthodontic polymers; 2.1 Introduction.

2.1.1 Interatomic bonding for polymers2.1.2 General concepts for mechanical behavior of polymers; 2.1.3 General classification of polymers; 2.2 Fracture and deformation processes for polymers; 2.2.1 Classification of processes; 2.2.2 Brittle fracture of polymers; 2.2.3 Crazing of polymers; 2.2.4 Shear zones; 2.2.5 Strength diagrams; 2.3 Rheology of polymeric materials; 2.3.1 Introduction to rheology; 2.3.2 General descriptions of elasticity and viscoelasticity; 2.3.3 Newtonian fluids; 2.3.4 Transverse variation of velocity (velocity gradient); 2.3.5 Viscosity; 2.3.6 The Maxwell body.

2.3.7 The Kelvin-Voigt body2.3.8 Burgers body or four-element model; 2.3.9 Creep compliance; 2.3.10 Complex materials; 2.3.11 Dynamic mechanical analysis; Further reading; 3 -- Structure/property relationships in orthodontic ceramics; 3.1 Introduction; 3.2 Raw materials and manufacturing processes for ceramic brackets; 3.3 Optical properties of ceramic brackets; 3.4 Mechanical properties of ceramic brackets and clinical implications; 3.4.1 Fracture strength; 3.4.2 Fracture toughness; 3.4.3 Hardness; 3.5 Base characteristics of ceramic brackets; 3.6 Concluding remarks; References.

Two -- Orthodontic alloys: properties and clinical effects4 -- Orthodontic brackets; 4.1 Introduction; 4.2 Evolution and traditional brackets; 4.2.1 Original edgewise bracket; 4.2.2 Subsequent designs and traditional stainless steel brackets; 4.2.3 Bracket slot size; 4.2.4 Straight-wire appliance; 4.3 Self-ligating bracket (SLB); 4.4 Metallic brackets; 4.4.1 Introduction; 4.4.2 Traditional stainless steel bracket alloys and manufacturing processes; 4.4.3 Manufacturing of brackets by metal injection molding (MIM); 4.4.4 Titanium brackets; 4.4.5 Metallic brackets and medical imaging.

There are no comments on this title.

to post a comment.

No. of hits (from 9th Mar 12) :

Powered by Koha